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Abstract

We introduce a numerical model for the simulation of nuclear flames in Type Ia supernovae. This model is based on

a low Mach number formulation that analytically removes acoustic wave propagation while retaining the compress-

ibility effects resulting from nuclear burning. The formulation presented here generalizes lowMach number models used

in combustion that are based on an ideal gas approximation to the arbitrary equations of state such as those describing

the degenerate matter found in stellar material. The low Mach number formulation permits time steps that are con-

trolled by the advective time scales resulting in a substantial improvement in computational efficiency compared to a

compressible formulation. We briefly discuss the basic discretization methodology for the low Mach number equations

and their implementation in an adaptive projection framework. We present validation computations in which the

computational results from the low Mach number model are compared to a compressible code and present an appli-

cation of the methodology to the Landau–Darrieus instability of a carbon flame.

� 2003 Elsevier Inc. All rights reserved.
1. Introduction

Currently, the accepted model for Type Ia supernovae is the explosion of a carbon-oxygen white dwarf.

Observational evidence is inconsistent with the nuclear burning occurring in a prompt detonation mode.

Detailed computations show that a detonation predicts excess amounts of iron and fails to account for
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significant amounts of intermediate mass elements observed in the spectra of supernovae events. For this

reason, it is believed that at least the initial phases are governed by the propagation of constant-pressure

deflagrations. However, to obtain the energy generation rate needed to explode the star the deflagration
must be dramatically accelerated relative to the laminar flame speed of the burning front. The recent review

article by Hillebrandt and Niemeyer [1] provides an excellent discussion of the issues.

Within the star there are numerous mechanisms that have the potential to accelerate a deflagration wave.

Landau–Darrieus (LD) [2,3] instabilities can lead to wrinkling of the flame [4]. Because the lighter ash lies

below the heavier carbon–oxygen fuel, the flame interface is also subject to Rayleigh–Taylor and Kelvin–

Helmholtz instabilities. Finally, the flame can be accelerated by interaction with turbulence arising from

convective instabilities within the flame as well as turbulence generated by the deflagration itself.

Efforts focused on understanding the role of the different types of instabilities on accelerating a nuclear
flame have generated substantial interest in computational studies of flame microphysics. Several authors

have performed simulations in both two and three dimensions based on representing the flame as an in-

terface propagating through the media, see Hillebrandt and Niemeyer [1] for a discussion of this literature.

It has also become possible to perform detailed numerical simulations in two-dimensions (2D) and three-

dimensions (3D) that fully resolve the relevant burning and diffusive length scales. Niemeyer and Hille-

brandt [5] performed studies of this type but indicate that at the resolutions they present, the effects of

numerical diffusion are still apparent. In an effort to model larger physical domains, several investigators

have performed resolved computations using modified flame physics. For example, Khokhlov [6] uses an
auxiliary variable to model the burning front that predicts the correct one-dimensional (1D) laminar flame

speed while thickening the flame. Niemeyer and Hillebrandt [7] and Niemeyer et al. [8] use a weaker

nonlinearity in the reaction term to thicken the flame.

Although these types of simulations have been able to provide substantial insight into the dynamics of

nuclear deflagrations, they are limited in terms of both the spatial extent that can be modeled and the

computational expense associated with long time integrations. The use of modern adaptive mesh meth-

odologies such as FLASH [9,10] can be used to extend the size of the system that can be modeled; however,

temporal integration remains a problem. The issue arises because the flame phenomena being studied
propagate at speeds less than 1% of the sound speed in the star. Thus, time step limitations based on

acoustic Courant–Friedrich–Levy (CFL) considerations severely limit the time step relative to the velocity

of the flame.

Our goal in this paper is to introduce a low Mach number formulation of nuclear flames that alleviates

the acoustic time step constraint. This approach, based on low Mach number asymptotics, uses a projection

formulation coupled with higher-order Godunov advective differencing that allows time-steps based on

advection speeds rather than acoustic speeds. This type of approach was first used for combustion by Rehm

and Baum [11] and was derived from low Mach number asymptotics by Majda and Sethian [12]. For
problems in combustion, governed by an ideal gas equation of state, the low Mach number approach has

seen substantial development and has been successfully applied to simulation of laminar flames in one and

two dimensions and to 3D turbulent flames. A complete survey of the combustion literature is beyond the

scope of this paper. The reader is referred to Knio et al. [13] and Day and Bell [14] and the references cited

in those works for methodology for time-dependent, premixed flames. For steady diffusion flames, see, for

example, Bennett and Smooke [15] and Becker et al. [16] and the references cited in these works.

The methodology presented here generalizes the approach of Day and Bell [14] to the nuclear defla-

gration regime. In particular, we discuss the extension of the low Mach number methodology to degenerate
equations of state typical of stellar environments. For applications of this approach see Bell et al. [17] and

Bell et al. [18]. We note that in this paper we will focus on fully resolving both the reaction and diffusion

length scales; consequently, computational requirements will limit the domains of interest to at best a few

meters in each linear dimension. For this reason, we do not need to incorporate the thermodynamics effect

of stratification in the star, as represented by an anelastic approximation, in our computations. More
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precisely, for the domains we consider, the thermodynamic pressure varies by at most 1 part in 106 over the

domain, so assuming that this pressure is constant for the simulation is a negligible effect. For larger scale

computations where the spatial scale ranges over several kilometers, a generalized low Mach number model
would be required to accurately capture variations in thermodynamic pressure with altitude.

In the following section we discuss the basic equations and introduce the low Mach number model. In

Section 3 we discuss the basic projection algorithm and sketch its incorporation into an adaptive mesh

refinement algorithm. Section 4 presents a validation of the methodology by comparison with detailed

compressible computations and presents an initial application of the method to the study of a LD insta-

bility in two dimensions. In the final section we discuss potential application of this approach to more

detailed study of nuclear flame acceleration mechanisms.
2. Low Mach number model

The low Mach number model is derived from the compressible flow equations using asymptotic analysis.

These equations describe conservation of mass, momentum and energy augmented with species equations

for the isotopes present in the flame. For the stellar conditions typical of C+O flames we are considering

here, the Lewis number, which is the ratio of energy transport to species diffusion, is O(107) and the Prandtl

number, which is the ratio of fluid viscosity to energy transport, is O(10�5). Under these conditions, the flow
is well approximated by the system (see, for example, [19])

oq
ot

þr � qU ¼ 0;
oqU
ot

þr � ðqUU þ pÞ ¼ q~g;
oqE
ot

þr � ðqUE þ pUÞ ¼ r � ðjrT Þ þ qU �~g �
X

qqk _xk;
oqXk

ot
þr � qUXk ¼ q _xk:

Here, q, U , T and p are the density, velocity, temperature, and pressure, respectively, and

E ¼ eþ U � U=2 is the total energy with e representing the internal energy. In addition, Xk is the abundance

of the kth isotope, with associated production rate _xk and energy release qk. Finally, ~g is the gravitational

force and j is the thermal conductivity. (We note that the assumptions that fluid viscosity and species

diffusion are zero can be easily relaxed, see [14].)

For the stellar conditions being considered here the pressure contains contributions from ions, radiation,
and electrons. (See [20] for a discussion of equations of state for stellar matter.) Thus,

p ¼ pion þ prad þ pele ð1Þ

with

pion ¼
qkT
�Amp

; prad ¼ aT 4=3

and pele is the contribution to the thermodynamic pressure due to fermions. In these expressions, mp is the

mass of the proton, a is related to the Stefan–Boltzmann constant r ¼ ac=4, c is the speed of light,
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1=�A ¼
P

k Xk=Ak, Ak is the atomic number of kth isotope, and k is Boltzmann�s constant. We note that

pressure is of the form p ¼ pðq; T ;XkÞ. The ionic component has the form associated with an ideal gas but

the radiation and electron pressure components do not.
As a prelude to developing the low Mach number equations, we first rewrite the energy equation in terms

of the enthalpy, h ¼ eþ p=q

q
Dh
Dt

�Dp
Dt

¼ r � jrT �
X
k

qqk _xk:

For the lowMach number asymptotic analysis, we introduce scaled coordinates in which the time scale is

proportional to the spatial scale times the advective velocity scale. In this scaling, we expand pressure and

velocity in Mach number, M ¼ U=cs, (cs is the sound speed),

pðx; tÞ ¼ p0ðtÞ þMp1ðtÞ þM2pðx; tÞ

with a similar equation for Uðx; tÞ. Substituting these expansions into the equations of motion given above

and matching terms in M , we find p1ðtÞ ¼ 0, and a modified momentum equation:

oqU
ot

þr � qUU ¼ �rpþ q~g: ð2Þ

Thus, the pressure is decomposed into a thermodynamic component, p0, that depends only on time and a

perturbation component, p, that is OðM2Þ. For the low Mach number model, we ignore the OðM2Þ effects
on the thermodynamics. For simplicity, in this paper we will assume that the nuclear flame occurs in an

open environment under constant pressure so that the thermodynamic pressure is, in fact, a constant which

we denote as p0. With this assumption, the enthalpy equation reduces to

oqh
ot

þr � ðqUhÞ ¼ r � jrT �
X
k

qqk _xk: ð3Þ

The enthalpy and momentum equations combined with the species equations (and conservation of mass)

describe the evolution of the low Mach number system. However, this evolution is also constrained by the

equation of state. We will now show that this constraint is equivalent to a constraint on the divergence of
the velocity field. If we differentiate the equation of state along particle paths we obtain

0 � Dp
Dt

¼ op
oq

Dq
Dt

þ op
oT

DT
Dt

þ
X
k

op
oXk

DXk

Dt
:

Combining this equation with the mass conservation equation, we obtain

r � U ¼ 1

q op
oq

op
oT

DT
Dt

 
þ
X
k

op
oXk

DXk

Dt

!
:

To complete the specification of the low Mach number model, we need to derive the temperature evolution

equation. We note that although the thermodynamic variables are most naturally expressed here in terms of
q, T , and Xk, for this derivation, it is more convenient to express the thermodynamics in terms of p, T and

the Xk. With this dependence, differentiating the enthalpy equation we have

Dh
Dt

¼ oh
oT

����
p;Xk

DT
Dt

þ oh
op

����
T ;Xk

Dp
Dt

þ
X
k

oh
oXk

����
p;T ;Xj;j 6¼k

DXk

Dt
:
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After substituting from the above equations and using the low Mach number condition on p we have

qcp
DT
Dt

¼ r � jrT �
X
k

qðqk þ nkÞ _xk; ð4Þ

where

nk ¼
oh
oXk

����
p;T ;Xj;j 6¼k

and cp ¼
oh
oT

����
p;Xk

is the specific heat at constant pressure.
Substituting this into the above equation for r � U yields an expression for a constraint on the advective

flow velocities:

r � U ¼ 1

q op
oq

1

qcp

op
oT

r � jrT

  
�
X
k

qðqk þ nkÞ _xk

!
þ
X
k

op
oXk

_xk

!
� S: ð5Þ
3. Numerical methodology

In this section, we discuss the numerical methodology used to integrate the low Mach number equations

described above. The spatial discretization uses a second-order finite volume Godunov procedure. The
temporal discretization strategy is a fractional step approach based on a projection approximation. In this

approach we integrate the equations for momentum, isotope abundances and enthalpy using a lagged

approximation to the constraint. We then apply a discrete projection to the intermediate velocity computed

in the first step to enforce the constraint. This basic fractional step algorithm is embedded in a hierarchical

adaptive mesh refinement (AMR) algorithm. The version of the methodology presented here is an adap-

tation of the method presented by Day and Bell [14] for chemical combustion. In the following subsection

we describe the single-grid algorithm. We then discuss incorporation of that algorithm into an adaptive

projection framework.
Before describing the algorithm, we note that our approach differs from the standard approach to

discretizing the low Mach number system originally proposed for combustion by McMurtry et al. [21]. In

the McMurtry et al. approach an auxiliary equation for the density in convective form is derived by dif-

ferentiating the equation of state in time and replacing temporal derivatives of temperature and species by

spatial derivatives of these quantities. This equation is then used to advance the density in time with

temperature being determined from the equation of state. In the projection step, the McMurtry et al. al-

gorithm solves a constant coefficient Poisson equation to modify the velocity field so that the conservation

of mass equation is satisfied. In contrast to this approach, we directly solve the conservation form of the
equations for both enthalpy and density. Our projection step solves a variable coefficient elliptic equation to

enforce the velocity constraint given in Eq. (5). Although a comprehensive comparison of these approaches

is not available, our approach, although somewhat more expensive, conserves both mass and energy and

appears to provide a more robust discretization. See [14,22] for a more complete discussion of these issues.

3.1. Single grid algorithm

The single grid algorithm is essentially a three-step process. First, we use an unsplit second-order
Godunov procedure to predict a time-centered (tnþ

1
2) advection velocity, UADV;�, using the cell-centered data

at tn and the lagged pressure gradient from the interval centered at tn�
1
2. The provisional field, UADV;�,
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represents a normal velocity on cell edges analogous to a MAC-type staggered grid discretization of the

Navier–Stokes equations (see [23], for example). However, UADV;� fails to satisfy the time-centered diver-

gence constraint. We apply a discrete projection by solving the elliptic equation

DMAC 1

qn
GMAC/MAC ¼ DMACUADV;� � Sn

�
þ Dtn

2

Sn � Sn�1

Dtn�1

�
ð6Þ

for /MAC, where DMAC represents a centered approximation to a cell-based divergence from edge-based

velocities, and GMAC represents a centered approximation to edge-based gradients from cell-centered data.

The solution, /MAC, is then used to define

UADV ¼ UADV;� � 1

qn
GMAC/MAC:

UADV is a second-order accurate, staggered-grid vector field at tnþ
1
2 that discretely satisfies the constraint (5),

and is used for computing the time-explicit advective derivatives for U , qh and qXk.

In the next step of the algorithm we advance the advection–reaction–diffusion system for qh and qXk.

For the supernovae flames considered here, the nuclear burning occurs on a scale faster than the fluid

dynamics. For that reason, we treat the reactions using a symmetric Strang-splitting approach so that the

reaction can be treated with stiff ODE technology. We first advance the reactions terms Dt=2 in time. We

then advance the advection–diffusion part of the equation Dt in time followed by a second advancement of
the reaction terms Dt=2 in time.

The reaction part of the enthalpy and isotope equations are of the form

oXk

ot
¼ _xk

and

cp
oT
ot

¼ �
X
k

ðqk þ nkÞ _xk:

For the reaction phase, cp changes with temperature and composition; however, because of the compu-

tational expense associated with computing cp we have frozen its value for the integration of the ODE

system. Numerical tests demonstrated that this simplification did not affect the computed deflagrations.

As a result of this approximation, we do not use the updated temperature from the reaction step to
update the enthalpy. Instead, we explicitly compute the change in enthalpy resulting from the change in

isotope abundances and use this updated enthalpy to derive the correct temperature at the end of the

reaction step.

In our implementation, we integrate the chemistry component using time-implicit backward difference

methods, as implemented in VODE [24], a general-purpose stiff ODE integration software package. VODE

utilizes adaptivity in order of accuracy and subcycled time-step selection so that an absolute error tolerance

of 10�16 in mass fractions is maintained throughout. Typically, the resulting scheme is between third- and

fifth-order convergent in time.
After completing the first reaction step, we update the advection–diffusion component of the system. One

numerical issue that must be addressed at this point is the nonlinearity of the enthalpy diffusion. The

advection–diffusion part of the enthalpy equation may be written explicitly in terms of enthalpy diffusion

oqh
ot

þr � Uqh ¼ r � j
cp

rh�r �
X
k

nk
j
cp

rXk

 !
: ð7Þ



J.B. Bell et al. / Journal of Computational Physics 195 (2004) 677–694 683
We advance this equation using a linear Crank–Nicolson algorithm, but the coefficients j and cp vary with

the solution over time and space. These variations may be incorporated into the linear scheme simply by

using a predictor–corrector iteration (detailed below), where the coefficients at the new-time are re-evalu-
ated between iterations. With a good initial guess for the new-time j and cp, a single corrector iteration is

sufficient to guarantee stability and second-order accuracy in time.

We begin the advection–diffusion step with the cell-centered data (denoted with a superscript n) obtained
from the initial chemistry advance. A second-order Godunov procedure is used to extrapolate the tem-

perature and abundances at tn to cell edges at tnþ
1
2 ¼ t þ Dt=2. The fluid density at the edges is computed

using the relation, q ¼
P

k qXk, and the enthalpy, h, is computed from q, T , and Xk. An explicit update for

the new-time abundances at cell-centers, ðqXkÞnþ1
may be formed using the extrapolated edge states, and the

projected advection velocity, UADV,

ðqXkÞnþ1 ¼ ðqXkÞn � Dt r � UADVqXk

� �nþ1
2: ð8Þ

A corresponding cell-centered value of density at tnþ1 is then available using the expression qnþ1 ¼P
kðqXkÞnþ1

.

Next, we predict a preliminary tnþ1 value of temperature, ~T , to be used in the initial estimates of the new-

time transport coefficients. We employ a Crank–Nicolson discretization of the temperature equation with tn

values of j and cp.

qnþ1
2cnp

~T � T n

Dt

 
þ UADV � rT
� �nþ1

2

!
¼ 1

2
rjnrT n
�

þrjnr~T
�
; ð9Þ

where qnþ1
2 ¼ 1

2
ðqnþ1 þ qnÞ. The new-time abundances and this preliminary temperature ~T are then used to

to evaluate provisional fluid properties ðj; cp; nkÞnþ1;�
. A predicted value of enthalpy hnþ1;� is then computed

using

qnþ1hnþ1;� � qnhn

Dt
¼ðr � UADVqhÞnþ

1
2 þr � 1

2

jnþ1;�

cnþ1;�
p

rhnþ1;�

"
þ jn

cnp
rhn

#

�r � 1
2

X
k

nnþ1;�
k

jnþ1;�

cnþ1;�
p

 !
rXnþ1

k

"
þ nnk

jn

cnp

 !
rXn

k

#
: ð10Þ

We complete the predictor component of our advance algorithm by extracting an updated provisional

temperature, T nþ1;�, using Newton�s method from hnþ1;� and the Xnþ1
k values computed earlier.

The corrector step begins with a re-evaluation of j and cp using T nþ1;� and Xnþ1
k . The final enthalpy hnþ1

is obtained by solving

qnþ1hnþ1 � qnhn

Dt
¼ r � UADVqh
� �nþ1

2 þr � 1
2

jnþ1

cnþ1
p

rhnþ1

"
þ jn

cnp
rhn

#

�r � 1
2

X
k

nnþ1
k

jnþ1

cnþ1
p

 !
rXnþ1

k

"
þ nnk

jn

cnp

 !
rXn

k

#
: ð11Þ

The temperature, T nþ1, is computed by once again inverting the equation of state for enthalpy, with hnþ1

and Xnþ1
k . The integration of the enthalpy and abundance equations is completed by again advancing the

reaction part of the system Dt=2 in time. This provides a complete update of the q, h, T , and Xk �s at the new
time and allows us to evaluate the constraint on the constraint on the velocity field, Snþ1 at the new time.

The final step of basic integration step is to advance the velocity to the new time level. For this step we

first obtain a provisional cell-centered velocity at tnþ1 using a time-lagged pressure gradient,
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qnþ1
2
Unþ1;� � Un

Dt
þ qnþ1

2 ðUADV � rÞU
� 	nþ1

2 ¼ �rpn�1
2 þ qnþ1

2~g:

At this point Unþ1;� does not satisfy the constraint. We apply an approximate projection to simultaneously

update the pressure and to project Unþ1;� onto the constraint surface. In particular, we solve

Lq/ ¼ D Unþ1;�
�

þ Dt

qnþ1
2

Gpn�1
2

�
� Snþ1 ð12Þ

for nodal values of /, where Lq is the standard bilinear finite element approximation to r � 1qr with q
evaluated at tnþ

1
2. In this step, D is a discrete second-order operator that approximates the divergence at

nodes from cell-centered data, and G ¼ �DT approximates a cell-centered gradient from nodal data. In the

formulation, / satisfies Neumann boundary conditions at solid walls and inflow boundaries. At outflow

boundaries, Dirichlet conditions are generated to suppress any tangential accelerations on the fluid leaving

the domain. See [25] for a more detailed discussion of projection issues. Nodal values for Snþ1 for the
solution of (12) are computed using a volume-weighted average of cell-centered values. Finally, we de-

termine the new-time cell-centered velocity field from

Unþ1 ¼ Unþ1;� � Dt

qnþ1
2

G/
�

� Gpn�1
2

�

and the new time-centered pressure from

pnþ1
2 ¼ /:

This completes the description of the time-advancement algorithm.

Before discussing the incorporation of this methodology in an adaptive mesh refinement algorithm, we

note some of the properties of the algorithm. First, we emphasize that the temperature equation is used only

in an auxiliary capacity in the algorithm. The energy is evolved using the numerically conservative dis-

cretized enthalpy equation, (10) and (11). As noted earlier, although the scheme rigorously satisfies con-

servation of mass and enthalpy, the evolution does not strictly maintain the equation of state at ambient
pressure. Since the low Mach number asymptotics used to derive the governing equation show that the

thermodynamic pressure only satisfies (1) to OðM2Þ, relaxing the imposition of (1) is a reasonable way of

dealing with the overdetermined system. However, to ensure that the accumulated deviation from the

equation of state remains small over long-time integrations, we augment the constraint Eq. (5) to ac-

commodate variations in thermodynamic pressure, and approximate those terms in such a way as to gently

damp the deviation to zero. The appropriate material derivative of pressure, suitably scaled for addition to

the right-hand side of Eq. (5),

f

cq op
oq

op
ot

�
þ U � rp

�

is included during the intermediate velocity projection required to evaluate convective derivatives. In this
expression c ¼ cp=cv is the ratio of the two thermodynamic specific heats, and f is a constant relaxation

factor. We approximate op=ot by ðpamb � p0Þ=Dt, where p0 is defined discretely from Eq. (1), pamb is the

specified ambient pressure, and U � rp is approximated with upwind differences using p0. Thus, we are

effectively adding a first-order approximation to the material derivative of p0 � pamb along streamlines. This

forcing term prevents the solution from deviating an appreciable amount from the equation of state while

maintaining the second-order accuracy of the overall scheme.
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3.2. Adaptive mesh refinement

In this section, we present an overview of the adaptive projection algorithm. This framework, used in
Day and Bell [14], was initially developed by Almgren et al. [26], and extended to low Mach number

combustion by Pember et al. [27]. The discussion provides only an overview of the methodology. We refer

the reader to the above papers for more details of the basic algorithm.

Our implementation of adaptive mesh refinement (AMR) is based on a sequence of nested grids with

successively finer spacing in both time and space. In this approach, fine grids are formed by evenly di-

viding coarse cells by a refinement ratio, r, in each direction. Increasingly finer grids are recursively

embedded in coarse grids until features of the solution are adequately resolved. An error estimation

procedure based on user-specified criteria evaluates where additional refinement is needed and grid
generation procedures dynamically create or remove rectangular fine grid patches as resolution require-

ments change.

The adaptive integration algorithm advances grids at different levels using time steps appropriate to that

level, based on CFL considerations. The multi-level procedure can most easily be thought of as a recursive

algorithm in which, to advance level ‘, 06 ‘6 ‘max, the following steps are taken:

• Advance level ‘ in time one time step, Dt‘, as if it is the only level. If ‘ > 0, obtain boundary data

using time-interpolated data from the grids at ‘� 1, as well as physical boundary conditions, where

appropriate.
• If ‘ < ‘max

s Advance level (‘þ 1) for r time steps, Dt‘þ1 ¼ 1
r Dt

‘, using level-‘ data and the physical boundary con-

ditions.

s Synchronize the data between levels ‘ and ‘þ 1, and interpolate corrections to finer levels

½‘þ 2; . . . ; ‘max�.
The adaptive algorithm, as outlined above, performs operations to advance the grids at each level in-

dependent of other levels in the hierarchy (except for boundary conditions) and then computes a correction

to synchronize the levels. Loosely speaking, the objective in this synchronization step is to compute the
modifications to the coarse grid that reflect the change in the coarse grid solution due to the presence of

the fine grid. More specifically, when solving on a fine grid, we supply Dirichlet boundary conditions from

the coarse grid. This leads to a mismatch in the associated fluxes at the coarse-fine interface that is corrected

by the synchronization.

For the adaptive projection methodology presented here there are three basic steps in the synchroni-

zation. First, the values obtained for U , qXk and qh are averaged from the fine grid onto the underlying

coarse grid. We view the resulting data as defining a preliminary composite grid solution that is consistent

between levels. We will denote this preliminary solution with a p superscript in the remainder of the section.
To complete the synchronization we need to correct inconsistencies arising from the use of Dirichlet

boundary conditions at coarse-fine boundaries. In particular, we compute increments to qXk and qh that

correct the flux mismatches at coarse-fine interfaces. Finally, we correct the velocity field to satisfy a di-

vergence constraint over the composite grid system.

There are two components that contribute to flux mismatch. First, UADV, the edge-based advection

velocity satisfies the constraint on the coarse level and the fine level separately. However, since we only

satisfy the Dirichlet matching condition for /MAC in (6), the value of UADV computed on the coarse

level does not match the average value on the fine grid. We define the mismatch in advection velocities
by

dUADV;‘ ¼ �UADV;‘;nþ1
2 þ 1

r2
Xr�1

k¼0

X
edges

UADV;‘þ1;nþkþ1
2
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along the coarse-fine boundary. We then solve the elliptic equation

DMAC 1

q
GMACde‘ ¼ DMACdUADV;‘

and compute

UADV;‘;corr ¼ � 1

q
GMACde‘;

which is the correction needed forUADVto satisfy the constraint andmatching conditions on the composite (‘,
‘þ 1) grid hierarchy. This correction field is used to compute amodification to the advective fluxes for species
and enthalpy that reflects an advection velocity field that satisfies the constraint on the composite grid.

The second part of the mismatch arises because the advective and diffusive fluxes on the coarse grid were

computed without explicitly accounting for the fine grid, while on the fine grid the fluxes were computed

using coarse-grid Dirichlet boundary data. We define the flux discrepancies

dFqh ¼ Dt‘
 

� F
‘;nþ1

2

qh þ 1

r2
Xr�1

k¼0

X
edges

F
‘þ1;nþkþ1

2

qh

!

and

dFqXk ¼ Dt‘
 

� F
‘;nþ1

2
qXk

þ 1

r2
Xr�1

k¼0

X
edges

F
‘þ1;nþkþ1

2
qXk

!
;

where F is the total (advective + diffusive) flux through a given interface prior to these synchronization

operations. Since mass is conserved, corrections to density, dqsync, on the coarse grid associated with

mismatched advection fluxes may be computed explicitly

dqX sync
k ¼ �DMAC UADV;corrqXk

� �nþ1
2 þ dFqXk ð13Þ

and dqsync ¼
P

k dqX
sync
k .

The synchronization correction for h is more complex because of the implicit discretization of diffusion.

In particular, computing dhsync requires solution of a linear system, since the flux mismatch contains implicit

diffusion fluxes from the Crank–Nicolson discretization. To set up the synchronization, we first note that

dðqhÞsync ¼ hnþ1;pdqsync þ qnþ1dhsync:

Then, we have

qnþ1

 
� Dt

2
r jnþ1

cnþ1
p

r
!
dhsync ¼� DMAC UADV;corrqh

� �nþ1
2 þ dFqh

þr �
X
k

nkðT nþ1;pÞ jnþ1

cnþ1
p

rdX sync
k

 !
: ð14Þ

The corrections dqsync, dqX sync
k , and dqhsync are added to the coarse field at level-‘, and interpolated to all

finer levels. Finally, a new temperature field is computed using Newton�s method on all affected levels.

A similar process is also used to generate a correction to the velocity field. However, the velocity flux
correction must be projected to obtain the component satisfying the constraint that updates U and the

component that updates p. At this point there are two additional corrections needed for the composite

velocity field:
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• A correction arising because the projection at level ‘þ 1 used Dirichlet data from level ‘, leading to a

mismatch in normal derivative at coarse-fine boundaries.

• The temperature and species adjustment in the first part of the synchronization leads to an increment in

the computed S field.
Since the projection is linear, both of these corrections as well as the projection of the velocity flux cor-

rection can be combined into a single, multi-level node-based synchronization solve performed at the end of

a coarse-grid time step.

We note that with the synchronization procedure outlined above, the adaptive algorithm preserves the

second-order accuracy and the conservation properties of the single-grid algorithm. The methodology has

been implemented for distributed memory parallel processors using the BoxLib class libraries described by

Rendleman et al. [28]. In this approach, grid patches are distributed to processors using a heuristic

knapsack algorithm to balance the computational work developed by Crutchfield [29] (see also [28]).
4. Results

In this section, we present two sets of computational results. The first set of results presents comparisons

of the low Mach number model with a comparable compressible code for 1D flames at various densities.

These examples serve to validate the low Mach number algorithm and quantify the errors associated with

the low Mach number approximation. The second set of results describes the application of the method-
ology to simulation of the LD instability in two dimensions.

The numerical simulations were performed using the equation of state described by Timmes and Swesty

[30] which computes the internal energy, pressure and thermodynamic derivatives (including the specific

heats at constant volume and pressure) of these quantities as functions of temperature, density and the

nuclear-species mass fractions. The values of the thermal conductivity, j, are calculated using the procedure

described by Timmes [31].

4.1. Validation

The validation studies were performed by comparing 1D laminar solutions tabulated in Dursi et al. [32]

to 12C/24Mg nuclear flames for several physical conditions. Each simulation was constructed in the same

way. A 2D domain, periodic in one dimension, and with an inflow boundary condition on one face and an

outflow condition on the opposite face is constructed. For each case we initialize the domain with an in-

terface separating 12C fuel and 24Mg ash. We specify density and temperature for the 12C and temperature

for the 24Mg. For this specification, the temperature of the fuel must be below the initiation temperature for

the reaction whereas the initial ash temperature must be high enough to ignite the flame. The ash density is
computed from the equation of state so that pressure is constant in the domain, consistent with the low

Mach number hypothesis. We specify inflow of the cold fuel at a fixed speed on the 12C side of the interface

and specify outflow on the 24Mg side. The region of contact between the fuel and the ash is smoothed over a

distance that is a small fraction of the size of the computational domain. The grid spacing is specified so

that there are approximately 5 computational zones, at the coarsest level of refinement, in the flame.

The simulation proceeds with a single level of refinement until the initiation of the nuclear flame which is

seen as a deviation of the temperature of the outflowing ash and a sharp increase in the energy generation

rate. At that point, additional levels of refinement are added to the simulation until the speed of the nuclear
flame and the flame shape converges. The simulation is then restarted using this computed constant speed

to obtain a steady laminar solution.

To model the 12C/24Mg reaction we used a single-step mechanism derived from [33]. This reaction has the

form:
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_X 12C ¼ � 1

12
RðT ÞqX 2

12CðtÞ;
_T ðtÞ ¼ �Q _X 12CðT Þ=cp;

where the rate of reaction, RðT Þ, is

RðT Þ ¼ 4:27� 1026
T 5=6
9;a

T 3=2
9

exp
�84:165

T 1=3
9;a

(
� 2:12� 10�3T 3

9

)
;
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Fig. 1. Laminar flame solution for q ¼ 5� 107 g/cm3, T ¼ 107 K. Shown are the solutions for density, speed, and temperature. The

difference with the FLASH results from Dursi et al. [32] is indicated on the temperature result.
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T9 ¼ T =109 K, T9;a ¼ T9=ð1þ 0:0396T9Þ, q is density, and Q is a constant. For the 12C/24Mg reaction, the

value of the specific energy release, Q, is taken to be 5.57� 1017 erg/g. As noted above, the specific heat can

be held constant with no apparent loss of accuracy. We neglect the effects of nuclear screening on this rate,
as they are quite small for the conditions we consider.

Two 12C/24Mg simulations with initial 12C density values of q ¼ 2:5 and 5� 107 g/cm3, both with a fuel

temperature of 107 K were run. Measured laminar flame speeds differed by no more that 0.1% from those

listed in Dursi et al. [32]. Fig. 1 shows the laminar flame solution for temperature, density and flow velocity

for the case in which the initial 12C density is 5� 107 g/cm3. The slight differences in the computed flame

speed between FLASH and the low Mach number code result in slightly different flame locations after the

flame has relaxed to a full steady state. We have corrected for this effect by spatially shifting the FLASH

solutions for comparison to the low Mach number results. In Fig. 1 we plot the computed laminar flame
solution and the difference between low Mach number solution and the solution computed with FLASH.

The largest difference is in temperature which shows an error of approximately 1.25% in the transition

region where temperature changes by almost three orders of magnitude. Differences between the solutions

for density and flow velocity are less than 1%.

Finally, we make some additional remarks concerning the relative efficiency of the low Mach number

method compared to the compressible methods. The low Mach number method in this paper and the

compressible method used in FLASH have similar strategies for resolving spatial structures in the fluid flow.

Therefore, they tend to result in similar resolutions in their spatial discretizations. Where they differ is in the
time-step requirements. The time steps in a compressible method are limited by the need to obey the CFL

constraint using as a velocity the speed of sound in the fluid; the low Mach number method has a similar

CFL constraint, however it uses the fluid advection velocity. For the case considered in this section, the

speed of sound is approximately 5� 108 cm/s, while a typical advective velocity is the laminar flame speed,

which is approximately 6.82� 105 cm/s. Thus, the low Mach number implementation requires roughly a

factor of 1000 fewer time steps to model the same flow. For lower density flames, and flames that contain
Fig. 2. Two-dimensional convergence study. Left: Curves represent temperature versus distance along a vertical slice through the cusp

for base resolutions of 32� 32, 64� 64, and 128� 128, with 2 levels of refinement 0.420 ls. Right: Image of temperature field at

medium and finest resolutions.
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more than one species, this disparity can be even greater. For example, a flame consisting of 75% 12C and

25% 16O at a density of 2.5� 107 g/cm3 has a ratio of sound speed to laminar speed of nearly 5000.

4.2. Landau–Darrieus simulations

In this section, we describe simulations designed to illustrate the LD instability in a nuclear flame using

direct numerical simulation. A perturbed initial planer inflow of 12C fuel impinges on a hot, lower density
24Mg ash. As above, the fuel burns in a single-step mechanism to form the ash. The initial perturbation is

formed by shifting the laminar flame solution for the corresponding density, temperature, and mass

fractions such that a fixed number of wavelengths of random phase and amplitude are contained in the

domain.
Before illustrating the application of the method discussed above to the dynamics of multi-mode LD

instabilities, we first present a 2D convergence study for a single mode in a smaller domain to assess the

resolution requirements needed for accurate multi-dimensional simulations. For this study we initialize with

a single frequency in a small domain of 0.32� 0.32 cm2 at 3 resolutions corresponding to base grids of

32� 32, 64� 64, and 128� 128 using 2 levels of refinement. Fig. 2 demonstrates convergence of the method
Fig. 3. Time history of LD simulation, showing coalescence of LD peaks (e.g., A and B); q ¼ 5� 107 g/cm3 and T ¼ 107 K. Shown is

vertical flow velocity. The �searchlights� are regions of lower flow speed in the ash (see Fig. 4). Time increases down the left-hand

column from 0.78 ls and continues down the right column to 3.4 ls.
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and shows that acceptable accuracy is obtained on the 64� 64 base grid, which corresponds to approxi-

mately 5 points per flame thickness at the grid spacing of the finest level. The flame thickness is defined to be

ðTmax � TminÞ=maxðrT Þ. (Another common definition for the flame thickness is the width of the zone 10–
90% of the peak temperature, Timmes and Woosley [19], which results in flame thickness about twice as

large.) For the computations presented below we have used a resolution comparable to the 128� 128 case.

Fig. 3 illustrates the LD instability by showing the time history of velocity field. In this calculation the

random perturbation of the initial planar laminar solution contained 30 frequencies of amplitude ap-

proximately 50 times the laminar flame thickness. The domain is 2.56� 1.28 cm2 with 1024� 512 zones at

the coarsest level of refinement. Cells with steep temperature gradients were refined up to two levels giving

an effective computational domain of 4096� 2048 zones. The density of the 12C fuel is 5� 107 g/cm3 and the

inflow temperature is 107 K; 12C fuel is being passed in from the bottom into the ash that is at the top of the
figure (i.e. the center of the star is above the top of the figure). In this figure, the letters A and B mark two

cusps that slowly coalesce to form a single LD cusp. This behavior was also seen in the LD calculation

described next, and we conjecture that in periodic domains LD cusps will always coalesce until only one

cusp remains. Fig. 4 explains the appearance of the �searchlight� features in Fig. 3. Although the flow speed

in the ash is sharply peaked at the LD cusp, it rapidly decays to a speed that is lower than the post-flame

speed in the valleys between the cusps. The flow speed in the fuel is depressed in the valleys between the

cusps relative to the flow speed in the fuel below the LD cusps.

Fig. 5 shows a well developed LD cusp for a simulation performed on a smaller domain (1.28� .64 cm2

at base resolution of 512� 256) using the same material parameters as in the previous example. In this case,

only 5 frequencies were used to randomize the planar laminar solution. After about 2–3 ls the details of the
initial perturbations have disappeared and the LD cusps have coalesced. We continued to track the solution

up to 10 ls. Fig. 6 shows the displacement in the stabilized LD cusp over a time range of approximately 3

ls, indicating a increase in the laminar speed of 12,210 cm/s, or about 1.8%. Over the time period 3–10 ls
the amplitude of the cusp decreases by 0.009 cm, which is approximately 10% of the extent of the cusp at

t ¼ 3 ls. The long time behavior of an isolated cusp is under investigation.
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Fig. 4. Flow velocity at peak of the LD cusp and valleys between the LD cusps.
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We note that the behavior of the flame undergoing the LD instability at this density is considerably

smoother than that shown in Niemeyer and Hillebrandt [5] for the same density. The reason for this dif-

ference is that we initialize the problem in pressure equilibrium whereas Niemeyer and Hillebrandt do not.

Consequently, in the Niemeyer and Hillebrandt study there is an initial transient phase in which the

acoustic waves relax in the domain. (This relaxation occurs on a much faster time scale than the flame

propagation.) As a result, their flame propagates into region where the velocity field contains fine-scale

remnants of the relaxation whereas in our simulations the flame propagates into an undisturbed region.
Several mechanisms have been proposed [1] that could give rise to an acceleration of the laminar flame

speed in a Type Ia supernova. One part of some of these mechanisms is that the LD instability through the

wrinkling in the flame surface, while not giving rise to turbulent motion, could give rise to sufficient flame

speed acceleration to account for observed isotopic abundances and energy release. These calculations seem

to indicate the LD instability by itself is insufficient to give rise to significant acceleration of the flame front.
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5. Conclusions

The low Mach number numerical methods for chemical combustion introduced by Day and Bell [14] has
been successfully extended to account for non-ideal gas law equations of state. The method yields results

that compare well with established compressible simulations [32]. The low Mach number method enables

new astrophysical problems to be explored, such as fully resolved instabilities at low-moderate densities;

such problems are not tractable with a fully compressible code.

The computer program implementing the algorithms presented in this paper will be used to conduct

several sets of computational experiments aimed at increasing our understanding of the microphysics of

nuclear flames. Though not detailed in the presentation, the program has already been extended to handle

more than one nuclear reaction, more than two isotopes, and three dimensions. This code will be used to
perform a comprehensive examination of the phenomenology of two dimensional instabilities of the flame

front. Later, the effects of LD and Rayleigh–Taylor instabilities and their interaction with turbulence will

be examined in three dimensions.
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